Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1376838, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590521

RESUMO

Background: Multiple sclerosis (MS) is the most common chronic inflammatory disease of the central nervous system. Currently, the pathological mechanisms of MS are not fully understood, but research has suggested that iron metabolism disorder may be associated with the onset and clinical manifestations of MS. Methods and materials: The study utilized publicly available databases and bioinformatics techniques for gene expression data analysis, including differential expression analysis, weighted correlation network analysis, gene enrichment analysis, and construction of logistic regression models. Subsequently, Mendelian randomization was used to assess the causal relationship between different iron metabolism markers and MS. Results: This study identified IREB2, LAMP2, ISCU, ATP6V1G1, ATP13A2, and SKP1 as genes associated with multiple sclerosis (MS) and iron metabolism, establishing their multi-gene diagnostic value for MS with an AUC of 0.83. Additionally, Mendelian randomization analysis revealed a potential causal relationship between transferrin saturation and MS (p=2.22E-02; OR 95%CI=0.86 (0.75, 0.98)), as well as serum transferrin and MS (p=2.18E-04; OR 95%CI=1.22 (1.10, 1.36)). Conclusion: This study comprehensively explored the relationship between iron metabolism and MS through integrated bioinformatics analysis and Mendelian randomization methods. The findings provide important insights for further research into the role of iron metabolism disorder in the pathogenesis of MS and offer crucial theoretical support for the treatment of MS.


Assuntos
Distúrbios do Metabolismo do Ferro , Esclerose Múltipla , Humanos , Esclerose Múltipla/genética , Genes Reguladores , Transferrinas , Ferro
2.
Front Immunol ; 15: 1339649, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348026

RESUMO

Background: There is increasing evidence that the types of immune cells are associated with various neurodegenerative diseases. However, it is currently unclear whether these associations reflect causal relationships. Objective: To elucidate the causal relationship between immune cells and neurodegenerative diseases, we conducted a two-sample Mendelian randomization (MR) analysis. Materials and methods: The exposure and outcome GWAS data used in this study were obtained from an open-access database (https://gwas.mrcieu.ac.uk/), the study employed two-sample MR analysis to assess the causal relationship between 731 immune cell features and four neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS). All immune cell data was obtained from Multiple MR methods were used to minimize bias and obtain reliable estimates of the causal relationship between the variables of interest and the outcomes. Instrumental variable selection criteria were restricted to ensure the accuracy and effectiveness of the causal relationship between species of immune cells and the risk of these neurodegenerative diseases. Results: The study identified potential causal relationships between various immune cells and different neurodegenerative diseases. Specifically, we found that 8 different types of immune cells have potential causal relationships with AD, 1 type of immune cells has potential causal relationships with PD, 6 different types of immune cells have potential causal relationships with ALS, and 6 different types of immune cells have potential causal relationships with MS. Conclusion: Our study, through genetic means, demonstrates close causal associations between the specific types of immune cells and AD, PD, ALS and MS, providing useful guidance for future clinical researches.


Assuntos
Doença de Alzheimer , Esclerose Amiotrófica Lateral , Esclerose Múltipla , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doenças Neurodegenerativas/genética , Esclerose Amiotrófica Lateral/genética , Doença de Alzheimer/genética , Doença de Parkinson/genética , Causalidade , Esclerose Múltipla/genética
3.
Sci Rep ; 13(1): 21606, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062190

RESUMO

This study aimed to investigate the relationship between hypertension and Alzheimer's disease (AD) and demonstrate the key role of stroke in this relationship using mediating Mendelian randomization. AD, a neurodegenerative disease characterized by memory loss, cognitive impairment, and behavioral abnormalities, severely affects the quality of life of patients. Hypertension is an important risk factor for AD. However, the precise mechanism underlying this relationship is unclear. To investigate the relationship between hypertension and AD, we used a mediated Mendelian randomization method and screened for mediating variables between hypertension and AD by setting instrumental variables. The results of the mediated analysis showed that stroke, as a mediating variable, plays an important role in the causal relationship between hypertension and AD. Specifically, the mediated indirect effect value for stroke obtained using multivariate mediated MR analysis was 54.9%. This implies that approximately 55% of the risk of AD owing to hypertension can be attributed to stroke. The results suggest that the increased risk of AD owing to hypertension is mediated through stroke. The finding not only sheds light on the relationship between hypertension and AD but also indicates novel methods for the prevention and treatment of AD. By identifying the critical role of stroke in the link between hypertension and AD, this study provides insights into potential interventions that could mitigate the impact of hypertension on AD. This could help develop personalized treatments and help improve the quality of life of patients with AD who suffer from hypertension.


Assuntos
Doença de Alzheimer , Hipertensão , Doenças Neurodegenerativas , Acidente Vascular Cerebral , Humanos , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Análise da Randomização Mendeliana , Qualidade de Vida , Hipertensão/complicações , Hipertensão/genética , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
4.
Carbohydr Polym ; 275: 118779, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742404

RESUMO

Previous researches suggested that polysaccharides from brown algae had anti-virus activity. We hypothesized that nature polysaccharide from marine plants might have the effect on anti-SARS-CoV-2 activity. By high throughput screening to target 3CLpro enzyme using polysaccharides library, we discover a crude polysaccharide 375 from seaweed Ecklonia kurome blocked 3CLpro enzymatic activity and shows good anti-SARS-CoV-2 infection activity in cell. Further, we show that homogeneous polysaccharide 37502 from the 375 may bind to 3CLpro well and disturb spike protein binding to ACE2 receptor. The structure characterization uncovers that 37502 is alginate. These results imply that the bioactivities of 375 on SARS-CoV-2 may target multiple key molecules implicated in the virus infection and replication. The above results suggest that 375 may be a potential drug candidate against SARS-CoV-2.


Assuntos
COVID-19 , Polissacarídeos , Humanos , Simulação de Acoplamento Molecular , Alga Marinha/química , Internalização do Vírus/efeitos dos fármacos
5.
Neurochem Int ; 134: 104671, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31926197

RESUMO

Parkinson's disease (PD), the second most common chronic neurodegenerative disorder, broadly remains incurable. Both genetic susceptibility and exposure to deleterious environmental stimuli contribute to dopaminergic neuron degeneration in the substantia nigra. Hence, reagents that can ameliorate the phenotypes rendered by genetic or environmental factors should be considered in PD therapy. In this study, we found that polydatin (Pol), a natural compound extracted from grapes and red wines, significantly attenuated rotenone- (Rot) or Parkin deficiency-induced mitochondrial dysfunction and cell death in SH-SY5Y, a human dopaminergic neuronal cell line. We showed that Pol significantly attenuated the Rot-induced decrease in cell viability, mitochondrial membrane potential (MMP), and Sirt 1 expression and increase in cell death, reactive oxygen species (ROS) and DJ1 expression. Rot resulted in a decrease in mTOR/Ulk-involved autophagy and an increase in PGC1ß/mfn2-involved mitochondrial fusion, which was inhibited by Pol. We further demonstrated that the protective effects of Pol are partially blocked when autophagy-related gene 5 (Atg5) is genetically inactivated, suggesting that Pol-mediated neuroprotection requires Atg5. Moreover, Pol rescued Parkin knockdown-induced oxidative stress, mitochondrial dysfunction, autophagy impairment, and mitochondrial fusion enhancement. Interestingly, Pol treatment could also rescue the mitochondrial morphological abnormality and motorial dysfunction of a Drosophila PD model induced by Parkin deficiency. Thus, Pol could represent a useful therapeutic strategy as a disease-modifier in PD by decreasing oxidative stress and regulating autophagic processes and mitochondrial fusion.


Assuntos
Proteína 5 Relacionada à Autofagia/metabolismo , Autofagia/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Rotenona/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Autofagia/fisiologia , Morte Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/efeitos dos fármacos
6.
Neuromolecular Med ; 22(1): 56-67, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31401719

RESUMO

Parkinson's disease (PD), the most common neurodegenerative movement disorder, is characterized by the progressive loss of dopaminergic neurons in substantia nigra. The underlying mechanisms of PD pathogenesis have not been fully illustrated and currently PD remains incurable. Accumulating evidences suggest that mitochondrial dysfunction plays pivotal role in the dopaminergic neuronal death. Therefore, discovery of novel and safe agent for rescuing mitochondrial dysfunction would benefit PD treatment. Here we demonstrated for the first time that α-Arbutin (Arb), a natural polyphenol extracted from Ericaceae species, displayed significant protective effect on the rotenone (Rot)-induced mitochondrial dysfunction and apoptosis of human neuroblastoma cell (SH-SY5Y). We further found that the neuroprotective effect of Arb was associated with ameliorating oxidative stress, stabilizing of mitochondrial membrane potential, and enhancing adenosine triphosphate production. To investigate the underlying mechanism, we checked the AMP-activated protein kinase and autophagy pathway and we found that both were involved in the neuroprotection of Arb. Moreover, we explored the protective effect of Arb in drosophila PD model and found that Arb rescued parkin deficiency-induced motor function disability and mitochondrial abnormality of drosophila. Taken together, our study demonstrated that Arb got excellent neuroprotective effect on PD models both in vitro and in vivo and Arb might serve as a potent therapeutic agent for the treatment of PD.


Assuntos
Antioxidantes/uso terapêutico , Arbutina/uso terapêutico , Ericaceae/química , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Fitoterapia , Extratos Vegetais/química , Trifosfato de Adenosina/biossíntese , Adenilato Quinase/metabolismo , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Arbutina/isolamento & purificação , Arbutina/farmacologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/fisiologia , Neuroblastoma/patologia , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Rotenona/toxicidade , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
7.
Bioorg Med Chem Lett ; 30(3): 126898, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31874828

RESUMO

Protein disulfide isomerase (PDI), a chaperone protein mostly in endoplasmic reticulum, catalyzes disulfide bond breakage, formation, and rearrangement to promote protein folding. PDI is regarded as a new target for treatment of several disorders. Here, based on the combination principle, we report a new PDI reversible modulator 16F16A-NO by replacing the reactive group in a known PDI inhibitor 16F16 with nitric oxide (NO) donor. Using molecular docking experiment, 16F16A-NO could embed into the active cavity of PDI. From newly developed fluorescent assay, 16F16A-NO showed rapid NO release. Furthermore, it is capable to moderately inhibit activity of PDI and S-nitrosylate the protein, indicating by insulin aggregation assay and biotin-switch technique. Finally, it displayed a dose-dependent antiproliferative activity against SH-SY5Y and HeLa tumor cells. Our designed hybrid compound 16F16A-NO showed a reasonable activity and might offer a promising avenue to develop novel PDI inhibitors for disease treatments.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Doadores de Óxido Nítrico/química , Óxido Nítrico/metabolismo , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Doadores de Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Isomerases de Dissulfetos de Proteínas/metabolismo
8.
Genes (Basel) ; 10(11)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683990

RESUMO

Plant tissue culture methods, such as somatic embryogenesis, are attractive alternatives to traditional breeding methods for plant propagation. However, they often suffer from limited efficiency. Somatic embryogenesis receptor kinase (SERK)1 is a marker gene of early somatic embryogenesis in several plants, including pineapple. It can be selectively induced and promotes a key step in somatic embryogenesis. We investigated the embryonic cell-specific transcriptional regulation of AcSERK1 by constructing a series of vectors carrying the GUS(Beta-glucuronidase) reporter gene under the control of different candidate cis-regulatory sequences. These vectors were transfected into both embryonic and non-embryonic callus, and three immature embryo stages and the embryonic-specific activity of the promoter fragments was analyzed. We found that the activity of the regulatory sequence of AcSERK1 lacking -983 nt ~-880 nt, which included the transcription initiation site, was significantly reduced in the embryonic callus of pineapple, accompanied by the loss of embryonic cell-specific promoter activity. Thus, this fragment is an essential functional segment with highly specific promoter activity for embryonic cells, and it is active only from the early stages of somatic embryo development to the globular embryo stage. This study lays the foundation for identifying mechanisms that enhance the efficiency of somatic embryogenesis in pineapple and other plants.


Assuntos
Ananas/genética , Proteínas de Plantas/genética , Proteínas Quinases/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Técnicas de Embriogênese Somática de Plantas , Regiões Promotoras Genéticas , Proteínas Quinases/metabolismo
9.
Free Radic Res ; 53(6): 680-693, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31106605

RESUMO

Paraquat (PQ) is a widely used agro-chemical in agriculture and highly toxic to humans. Although the mechanism of PQ poisoning is not clear, it has been well documented that reactive oxygen species (ROS) generation and apoptosis play pivotal roles. Alternatively, chlorogenic acid (CA) is a biologically active dietary polyphenol, playing several therapeutic roles. However, it is not known whether CA has protective effect on PQ-induced apoptosis. Here, we investigated the effect of CA in preventing PQ-induced apoptosis and explored the underlying mechanisms. A549 cells were pretreated with 100 µM CA for 24 h and then exposed to 160 µM PQ for 24 h. We found that CA was effective in preventing PQ-induced apoptotic features, including the release of cytochrome c from the mitochondria to cytoplasm, the cleavages of caspase 3 and caspase 9, and the increases in levels of Bcl-2-associated X protein (Bax) and intracellular calcium ions. CA alleviated ROS production and prevented the reduction of antioxidant capacity in cells exposed to PQ by increasing NF-E2-related factor 2 (Nrf2), superoxide dismutase 2 (SOD2) and glutathione levels. In addition, CA also attenuated PQ-induced alterations of mitochondrial structure and function (such as the decreases in membrane potential and adenosine triphosphate level), and the impaired autophagic flux was improved by CA. Down-regulation of sirtuin 1 (Sirt1) by short hairpin RNA reversed the protective effects of CA. Thus, CA may be viewed as a potential drug to treat PQ-induced lung epithelial cell apoptosis and other disorders with similar pathologic mechanisms.


Assuntos
Apoptose/efeitos dos fármacos , Ácido Clorogênico/farmacologia , Mitocôndrias/efeitos dos fármacos , Paraquat/antagonistas & inibidores , Sirtuína 1/metabolismo , Células A549 , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Paraquat/farmacologia , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas
10.
Front Aging Neurosci ; 10: 246, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233351

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease, affecting about 7-10 million patients worldwide. The major pathological features of PD include loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) of the midbrain and the presence of α-synuclein-enriched Lewy bodies. Although the mechanism underlying PD pathogenesis remains to be elucidated, oxidative stress induced by the overproduction of reactive oxygen species (ROS) is widely accepted to be a key pathogenic factors. ROS cause oxidative damage to proteins, lipids, and DNA, which subsequently lead to neurodegeneration. Great efforts have been made to slow or stop the progress of PD. Unfortunately there is no effective cure for PD till now. Compounds with good antioxidant activity represent the promising candidates for therapeutics of PD. Some natural molecules from Chinese herbs are found to have good antioxidant activity. Both in vitro and in vivo studies demonstrate that these natural molecules could mitigate the oxidative stress and rescue the neuronal cell death in PD models. In present review, we summarized the reported natural molecules that displayed protective effects in PD. We also addressed the possible signal pathway through which natural molecules achieved their antioxidative effects and mitigate PD phenotypes. Hopefully it will pave the way to better recognize and utilize Chinese herbs for the treatment of PD.

11.
Anal Chem ; 90(12): 7122-7126, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29865790

RESUMO

We reported the first lysosome targeted two-photon fluorescent probe (Lyso-NP) as a viscosity probe for monitoring autophagy. The fluorescence lifetime of Lyso-NP exhibited an excellent linear relationship with viscosity value ( R2 = 0.99, x = 0.39). Lyso-NP also showed the specific capability for imaging lysosomal viscosity under two-photon excitation at 860 nm along with good biocompatibility. More importantly, Lyso-NP could be used to monitor the autophagy process in living cells by quantitatively detecting lysosomal viscosity changes during the membrane fusion process via two-photon fluorescence lifetime imaging.


Assuntos
Autofagia , Corantes Fluorescentes/química , Imagem Óptica , Fótons , Humanos , Células MCF-7 , Microscopia de Fluorescência , Estrutura Molecular , Viscosidade
12.
J Mater Chem B ; 6(27): 4417-4421, 2018 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32254658

RESUMO

We report that a dicyanyl derivative QN2 containing quaternary ammonium was capable of identifying apoptotic cells by targeting nucleic acid (DNA and RNA) and we were able to observe nuclear ultra-details using a stimulated emission depletion (STED) nanoscopy technique. QN2 could evaluate the anti-cancer drug pesticide effect by monitoring in real-time without interfering with normal cell proliferation. These results suggest the high potential for using QN2 in practice for monitoring apoptosis to evaluate tumor therapy effectiveness or for drug development.

13.
BMC Genomics ; 18(1): 503, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28668094

RESUMO

BACKGROUND: The MYB proteins comprise one of the largest families of plant transcription factors, which are involved in various plant physiological and biochemical processes. Pineapple (Ananas comosus) is one of three most important tropical fruits worldwide. The completion of pineapple genome sequencing provides a great opportunity to investigate the organization and evolutionary traits of pineapple MYB genes at the genome-wide level. RESULTS: In the present study, a total of 94 pineapple R2R3-MYB genes were identified and further phylogenetically classified into 26 subfamilies, as supported by the conserved gene structures and motif composition. Collinearity analysis indicated that the segmental duplication events played a crucial role in the expansion of pineapple MYB gene family. Further comparative phylogenetic analysis suggested that there have been functional divergences of MYB gene family during plant evolution. RNA-seq data from different tissues and developmental stages revealed distinct temporal and spatial expression profiles of the AcMYB genes. Further quantitative expression analysis showed the specific expression patterns of the selected putative stress-related AcMYB genes in response to distinct abiotic stress and hormonal treatments. The comprehensive expression analysis of the pineapple MYB genes, especially the tissue-preferential and stress-responsive genes, could provide valuable clues for further function characterization. CONCLUSIONS: In this work, we systematically identified AcMYB genes by analyzing the pineapple genome sequence using a set of bioinformatics approaches. Our findings provide a global insight into the organization, phylogeny and expression patterns of the pineapple R2R3-MYB genes, and hence contribute to the greater understanding of their biological roles in pineapple.


Assuntos
Ananas/genética , Perfilação da Expressão Gênica , Genômica , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Ananas/efeitos dos fármacos , Motivos de Nucleotídeos , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/química , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Fatores de Transcrição/química
14.
Polymers (Basel) ; 9(6)2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-30970906

RESUMO

A heterogalactan, named ACW0, was extracted from Antrodia camphorata and purified by anion exchange and gel permeation chromatography. It was composed of galactose (94.98%), traces of mannose (2.41%), and fucose (2.61%), with its molecular weight estimated to be 13.5 k Da. The polysaccharide ACW0 was shown to be a mannofucogalactan with a backbone chain of α-d-1,6-linked Gal, attached by a non-reducing terminal α-d-Man and α-l-Fuc on C-2 of nearly every six α-d-1,6-linked Gal residues. A sulfated polysaccharide, ACW0-Sul was achieved by the chlorosulfonic acid-pyridine method. Compared with the native polysaccharide, ACW0-Sul could disrupt tube formation and migration as well as cell growth of human microvascular endothelial cells (HMEC-1) dose-dependently. Further studies revealed that phosphorylation of Extracellular Regulated Protein Kinases (Erk) and Focal Adhesion Kinase (FAK) were significantly inhibited by ACW0-Sul. These results suggested that ACW0-Sul could be a potent candidate for anti-angiogenic agent development.

15.
J Mater Chem B ; 5(15): 2743-2749, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32264160

RESUMO

A new two-photon fluorescent probe (MCN) for viscosity imaging was developed based on a 6-substituted quinoline framework. MCN showed an excellent "off-on" fluorescence response (ca. 90-fold enhancement) with viscosity increasing in the glycerol-water viscosity system. MCN showed great sensitivity to viscosity (R2 = 0.98, x = 0.65), which gave rise to cell imaging for micro-viscosity or real-time cell imaging during apoptosis with low cytotoxicity under two-photon excitation (λex = 800 nm). Fluorescence lifetime imaging (FLIM) of living HeLa cells stained with MCN revealed that the intracellular average viscosity value was 73.45 ± 21.55 cP in cytosol. Imaging in living tissue slices indicated that MCN can work in deep tissue (∼130 µM) under two-photon excitation. Moreover, MCN also showed the capacity for in vivo imaging viscosity in zebrafish with obvious fluorescence emission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...